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1. Introduction

We depend on the non-renewable energy sources such as fossil 
fuels; this is essential to life. However, fossil fuel-derived CO2 is 
enormous and a factor that promotes global warming. The consump-
tion of fossil fuel is accelerated increasingly with world's population 
growth in the future, and worldwide demand for renewable energy 
(e.g., natural heat, sunlight, wind) is expected to expand.1,2) There-
fore, new energy production methods without CO2 emission are 
required for the realization of a clean energy and sustainable soci-
ety.3) Recently, development of thermoelectric conversion materials 
that convert thermal energy into electric energy attracts consider-
able attention. These materials have the potential to increase energy 
efficiency and to reduce CO2 emissions significantly.4) Power gener-
ation of these materials derive from the Seebeck effect, which is 
caused by charge carriers (e.g., electrons,  holes) in the metal or semi-
conductor material at the absolute temperature gradient: charge car-
riers diffuse from hot side to cold side, resulting in a current flow 
through the closed circuit.5) Thermoelectric conversion efficiency is 
defined as the dimensionless figure of merit ZT value.

ZT =(S 2σ/κ)T
where S, σ, κ and T are Seebeck coefficient, electrical conductivity, 

thermal conductivity and absolute temperature, respectively. Ther-
moelectric materials with high ZT and Power Factor PF (=S 2σ) are 
desirable, yet there remains a trade-off between σ and S. Generally, 
inorganic thermoelectric materials exhibit a large Seebeck coeffi-

cient as well as high electrical conductivity, high ZT values have 
been obtained (e.g., SnSe; ZT = 2.6,6) Bi2Te3-Sb2Te3; ZT = 2.47) ). 
Nevertheless, their weight, rigidity and poor processability have lim-
ited widespread application: it is very difficult to scale up large area 
modules. Meanwhile, a thermoelectric conversion element com-
posed of organic materials with electronic carriers such as conduc-
tive polymers8,9) has advantages of light weight, mechanical flexibil-
ity, low cost, and is a material with extremely high potential.10,11) 
Furthermore, large area modules can be formed by the printing 
method expected to have high productivity.12) Since we reported that 
stretched polyphenylenevinylene derivatives with ZT = 0.1 in 
2007,13) many researchers have been working on the development of 
organic thermoelectric materials using conductive polymers.14,15) In 
particular, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) 
(PEDOT-PSS) provides a lot of convenience (e.g., high conductivity, 
transparency, and excellent stability) and has been actively studied in 
recent years.16) According to Pipe's study, the doped level optimized 
PEDOT-PSS film recorded ZT=0.42.17) Cahill and coworkers re-
ported that the in-plane ZT value of this work was about 0.1.18) In 
the future, this ZT value needs to be improved to 2.0-4.0; for the 
effective use of huge unused thermal energy like natural heat and 
waste heat below 150 °C.19)

Our group has been interested in carbon nanotube or conductive 
polymer-metal nanoparticles (NPs) hybrid thermoelectric materi-
als.20-22) Hybridization23) of conductive polymers such as polyaniline 
(PANi)24) and PEDOT-PSS,25) with inorganic NPs can improve the 

*
**

***
****

Received 15th, April 2017; Accepted 22nd, August 2017
Department of Applied Chemistry, Tokyo University of Science Yamaguchi, Daigakudori, SanyoOnoda, Yamaguchi 756-0884, Japan.
Division of Applied Chemistry, Tokyo Metropolitan University, MinamiOsawa, Hachioji, Tokyo 192-0397, Japan.
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
Professor Emeritus, Tokyo University of Science Yamaguchi, Japan

Original Paper

Novel Preparation of Poly(3,4-ethylene dioxythiophene)-Poly(styrenesulfonate)- 
Protected Noble Metal Nanoparticles as Organic-Inorganic Hybrid Thermoelectric 
Materials

Shinichi Hata*, **, Taku Omura*, Keisuke Oshima*, Yukou Du***, Yukihide Shiraishi* and Naoki Toshima****

Abstract:      �Here, we describe a novel synthetic method of PEDOT-PSS (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate))-protected 
Ag, Au and Pd nanoparticles(NPs) by a simple procedure, and thermoelectric properties of the PEDOT-PSS films doped with these 
NPs. Interestingly, PEDOT-PSS films containing small amount of PEDOT-PSS-protected Ag NPs showed a higher electrical con-
ductivity than that of pure PEDOT-PSS. As a result, the PEDOT-PSS protected Ag NPs system showed a high in-plane power 
factor (35.2 µW m-1 K-2), which was relatively superior to that of conventional metal nanomaterial systems. Thus, we have succeeded 
in development of high performance organic-inorganic thermoelectric conversion films.

Key words:    Conductive polymer, Electrical conductivity enhancement, Metal nanoparticles, Thermoelectric materials



Bull. Soc. Photogr. Imag. Japan. Vol. 27 No. 2 (2017)14

thermoelectric performance of conductive polymers by utilizing the 
low thermal conductivity of organic constituents and high Seebeck 
coefficient of inorganic constituents. However, there is no systemat-
ic knowledge about the enhancement mechanism. To enhance carri-
er hopping between conductive polymers, we focus on conductive 
PEDOT-PSS-protected metal NPs of Ag, Au, and Pd (i.e., noble 
metal elements) with excellent electrical conductivities26,27) and in-
teresting chemical properties,28-30) because direct hybridization of 
PEDOT-PSS with various metal NPs is expected to lead to acceler-
ation of the hopping between PEDOT molecules by direct contact 
of PEDOT-PSS with metal NPs. In addition, methods for system-
atically preparing metal NPs protected with conductive polymers 
have not been reported until now.

Herein, we report on a novel synthetic method of PE-
DOT-PSS-protected Ag NPs, PEDOT-PSS-protected Au NPs 
and PEDOT-PSS-protected Pd NPs by a simple procedure of treat-
ing noble metal ion in PEDOT-PSS aqueous solution under mild 
conditions. We also describe the fabrication, thermoelectric proper-
ties of PEDOT-PSS hybrid films containing Ag, Au and Pd NPs, 
and new insights into higher thermoelectric performances than that 
of insulating poly(N-vinyl-2-pyrrolidone) (PVP)-protected Ag 
NPs.

2. Experimental

Materials
Silver perchlorate (AgClO4) was purchased from Kojima Chem-

icals Co., Ltd. Hydrogen tetrachloroaurate(III), tetrahydrate (HAu-
Cl4·4H2O), palladium(II) chloride (PdCl2), sodium borohydride, 
hydrochloric acid, nitric acid, sulfuric acid, hydrogen peroxide, silver 
standard solution (1,000 ppm), gold standard solution (1,000 ppm), 
palladium standard solution (1,000 ppm), and poly(N-vinyl-2-pyr-
rolidone) (PVP, MW ≈ 40000) were purchased from Wako Pure 
Chemical Industries, Ltd. Poly(3,4-ethylenedioxythiophene)-poly(-
styrenesulfonate) (PEDOT-PSS) aqueous solution (CleviosTM 
PH1000; 1 : 2.5 = PEDOT : PSS ratio (w/w)) was purchased from 
H.C. Starck, the solid content was 1.0-1.3 wt% in water. Polyimide 
film was kindly supplied by UBE Industries, Ltd., Japan. All chem-
icals were used without any further purification. Deionized water 
(18.2 MΩ·cm) was used for all aqueous solutions. 

PEDOT-PSS-protected noble metal NPs
The PEDOT-PSS-protected noble metal NPs were synthesized 

by a chemical reduction method. The nominal molar ratio (R), PE-
DOT-PSS (monomer unit of PEDOT-PSS: 657.645 g/mol) / met-
al precursor, was 1.6. A solution of AgClO4 (0.132 mmol, 27.4 mg) 
in 200 mL PH1000/water (v/v=1/13.6, 0.207 mmol in PEDOT- 
PSS monomer unit) was stirred under N2 atmosphere in an ice–wa-
ter bath at 0 °C for 1 h. Then, an aqueous solution of NaBH4 (10 mL, 
33 mM, 0 °C) was rapidly injected into the solution, and the mixture 
was stirred in an ice-water bath at 0 °C for 1 h, then characterized by 
Ultraviolet-Visible (UV-Vis) absorbance measurement. Thus pre-
pared Ag NPs dispersion was purified by filtration with an ultrafilter 
membrane (Advantec, Q01000 76E, a cutoff molecular weight: 

10000) and by washing with water to remove by-produced ions. The 
PEDOT-PSS aggregates dispersed in the solution were removed 
using a glass filter (Pyrex iwaki glass 17G4, pore size: 5~10 µm). The 
PEDOT-PSS-protected Ag NPs were finally obtained as bulk ma-
terials after removal of the solvent by using a rotary evaporator fol-
lowed by vacuum drying at 40 °C. The PEDOT-PSS-protected Au 
NPs and PEDOT-PSS-protected Pd NPs were prepared in the sim-
ilar manner.

Structural characterization of PEDOT-PSS-protected noble 
metal NPs

UV-Vis absorption spectra of PEDOT-PSS-protected noble 
metal colloidal dispersions were measured with a Shimadzu UV-
2500PC recording spectrophotometer using a quartz cell with 10 
mm of optical path length. Transmission electron microscopy 
(TEM) images were observed with a JEM 1230 instrument ( JEOL, 
Tokyo, Japan) at accelerated voltage of 80 kV. A colloidal dispersion 
solution 5 mg/L was obtained by dissolving the resultant bulk mate-
rials in water using Sonifier II model 250D ultrasonic homogenizer 
(Branson Ultrasonic, Emerson, Japan, Ltd.). The TEM sample was 
prepared by dropping the dispersion solution onto copper grids 
coated with a thin carbon film. The metal contents of PE-
DOT-PSS-protected noble metal NPs were determined by optical 
emission spectroscopy with inductively coupled plasma (ICP-OES, 
Varian 720-ES). For this purpose, the samples were solubilized in 
aqua regia (HCl/HNO3) or piranha solution (H2SO4/H2O2). ICP 
results showed that the metal content of Ag, Au and Pd NPs of the 
bulk materials were 2.4,  12.9 and 6.0wt%, respectively.

Preparation of PVP-protected Ag NPs
The PVP-protected noble metal NPs were synthesized by a 

chemical reduction method.31,32) The nominal molar ratio, R=PVP 
(monomer unit of PVP: 114.14 g/mol) / metal precursor was 1.6. A 
solution of AgClO4 (0.528 mmol, 109.46 mg) in 800 mL PVP (0.83 
mmol in PVP monomer unit) was stirred under N2 atmosphere in 
an ice–water bath at 0 °C for 1 h. Then, an aqueous solution of 
NaBH4 (10 mL, 132 mM, 0 °C) was rapidly injected into the solu-
tion, and the mixture was stirred in an ice-water bath at 0 °C for 1 h, 
then characterized by UV-Vis absorbance measurement. The mean 
diameters of NPs were determined from the TEM images to be 3.4 
± 1.2 nm. These results were consistent with the previous reoprt.31) 
The Ag amount was estimated by ICP measurement to be 0.58 mg/
mL.

Fabrication and evaluation of PEDOT-PSS-protected noble 
metal film

The PEDOT-PSS films containing various weight ratios of Ag 
NPs were prepared by the drop-casted method. PEDOT-PSS aque-
ous solutions (CleviosTM PH1000) containing 0.01-5.0 wt% of Ag 
NPs were sonicated (Ultrasonic Cleaner, TAITEC) for 30 min. Ho-
mogeneous Ag NPs dispersions with different weight ratios of solids 
were obtained. One of Ag NPs dispersion (0.8 mL/cm2) was 
drop-casted on a polyimide sheet, which was placed in a hot plate at 
40 °C for 12 h. Then, the surface of the film was covered with a small 



Shinichi Hata, Taku Omura, Keishuk Oshima, Yukou Du, Yukihide Shiraishi and Naoki Toshima         Novel Preparation of Poly(3,4-ethylene dioxythiophene)-Poly(styrenesulfonate)-Protected Noble Metal Nanoparticles as Organic-Inorganic Hybrid Thermoelectric Materials 15

amount of ethyleneglycol (0.24 mL/cm2) ,  dried at 90 °C for 12 h 
and then at 130 °C for 30 min,33,34) resulting in dry PEDOT- 
PSS-protected Ag NPs film with a 5.0±1.0 µm thickness. The PE-
DOT-PSS film, PEDOT-PSS film containing Au NPs, Pd NPs 
and PVP-protected Ag NPs were prepared in the similar manner. 
The in-plane thermoelectric properties of the thermoelectric con-
version films were measured at least 5 times each with a ULVAC 
ZEM-3 M8 instrument (ULVAC-RIKO Inc., Yokohama, Kanaga-
wa, Japan) purged with He at 330-390 K. 

3. Results and Discussion

Figure 1 shows the UV-Vis spectra of (a) PEDOT-PSS solution, 
(b) PEDOT-PSS-protected Ag NPs, (c) PEDOT-PSS-protected 
Au NPs and (d) PEDOT-PSS-protected Pd NPs, respectively. The 
color of PEDOT-PSS solution as blank sample was royal blue and 
the absorbance increased in the wavelength range above 500 nm. On 
the other hand, the solution of PEDOT-PSS-protected Ag NPs 
showed a peak at around 400 nm, which represents the surface plas-
mon resonance excitation of Ag NPs.35) Moreover, the PE-
DOT-PSS-protected Au NPs showed a dominant peak of an absor-
bance maximum at 540 nm, which is attributed to the plasmon 
resonance of the Au NPs.36) These observations clearly demonstrate 
the formation of Ag NPs in the PEDOT-PSS aqueous solution. In 
the PEDOT-PSS-protected Pd NPs system, no significant absorp-
tion peak was found on the spectra of the solution treated with 
NaBH4. However, the absorption in the ultraviolet-visible region 
increased, suggesting that the Pd NPs were formed.37)

Size and shape of the PEDOT-PSS-protected noble metal NPs 
were further confirmed by TEM observation. TEM images of the 
PEDOT-PSS-protected Ag NPs, PEDOT-PSS-protected Au NPs 
and PEDOT-PSS-protected Pd NPs in Figure 2 (a)-(c), respective-
ly, showed the formation of spherical NPs with a relatively narrow 
size dispersion. The mean diameters of the NPs were determined 

from the TEM images to be (d) 3.9 ± 1.2 nm, (e) 4.5 ± 1.5 nm, and 
(f ) 3.9 ± 1.3 nm. These mean diameters were estimated by averaging 
over 200 particles. There has been no study that tried to systemati-
cally prepare conductive polymer-protected metal NPs with a parti-
cle diameter on the order of nanometers.38,39) In this work, PE-
DOT-PSS-protected Ag NPs, PEDOT-PSS-protected Au NPs 
and PEDOT-PSS-protected Pd NPs of single dispersion and the 
small particle size were prepared by a chemical reduction method. 

We investigated the thermoelectric properties of PEDOT-PSS 
film containing conductive PEDOT-PSS-protected Ag NPs and 
insulating PVP-protected Ag NPs using Seebeck coefficient / elec-
tric resistance measurement system. Figure 3 summarizes (a) See-
beck coefficient S, (b) electrical conductivity σ, and (c) power factor 
PF (=S 2σ) at 345 K of PEDOT-PSS films containing various weight 
ratios of Ag NPs. All the films exhibited p-type conduction and the 
Seebeck coefficient of approximately 18.5 µV K-1 in each Ag NPs 
concentration region. The electric conductivity value was higher in 
PEDOT-PSS system than in PVP system for 0.01 to 1.0 wt% Ag 
NPs concentration. The highest power factor, 32 µW m-1 K-2 was 
observed at 0.01 wt% of Ag NPs; the carrier flow within the film 
accelerated by adding a small amount of conductive PEDOT-PSS 
protected Ag NPs. On the other hand, thermoelectric characteristics 
were not improved by the addition of insulating PVP-protected Ag 
NPs. We previously reported the thermoelectric properties of PE-
DOT-PSS films containing surfactants or polymer-protected metal 
nanomaterials (e.g., Au NPs or nanorods and Ag nanowires).25,40) 

Figure 1    �UV−Vis spectra of (a) PEDOT-PSS solution, (b) PEDOT- 
PSS-protected Ag NPs, (c) PEDOT-PSS-protected Au NPs and 
(d) PEDOT-PSS-protected Pd NPs dispersion. Broken and solid 
curves indicate pristine and treated with NaBH4, respectively.

Figure 3    �(a) Seebeck coefficient, (b) electrical conductivity and (c) thermo-
electric power factor at 345 K of PEDOT-PSS film (black) and 
PEDOT-PSS film containing various weight ratio Ag NPs with 
PEDOT-PSS (red) or PEDOT-PSS film including Ag NPs 
with PVP (blue).

Figure 2    �TEM image and size distribution histograms of PEDOT-PSS-pro-
tected Ag NPs (a and d), PEDOT-PSS-protected Au NPs (b and 
e) and PEDOT-PSS-protected Pd NPs (c and f ), respectively.



Bull. Soc. Photogr. Imag. Japan. Vol. 27 No. 2 (2017)16

The Seebeck coefficient of films containing the metal nanomaterial 
with the insulating layer decreased with increasing metal concentra-
tion, while the electrical conductivity increased, i.e., power factor 
improved. This suggested that the insulating protective agents on the 
metal surface prevent contact of the metal nanomaterial with PE-
DOT conductive polymers. On the basis of these results, higher 
thermoelectric performances are also expected to be realized by em-
ploying the conductive polymer-protected nanomaterials.

We next prepared the PEDOT-PSS film containing various 
amount of Ag NPs and investigated their thermoelectric perfor-
mance testing. Seebeck coefficient, electrical conductivity, and power 
factor at 330-380 K of PEDOT-PSS films containing Ag NPs of 
various weight ratios are shown in Figure 4 (a)-(c), respectively. The 
Seebeck coefficients of these films gradually increased with the tem-
perature up to around 390 K. The electrical conductivity of these 
sample slightly decreased i.e., negative slope in σ vs. T. This is an 
indication of metal-like behavior, as evident from the previous re-
ports.41-43) The electrical conductivity dramatically increased from 
827 to 1002 S/cm with the increase of Ag NPs content from 0.0 to 
0.01wt% at 380 K. As a result, the power factor of PEDOT-PSS 
film containing 0.01wt% Ag NPs was around 12% higher than that 
of pure PEDOT-PSS film (35.2 µW m-1 K-2). Surprisingly, the ther-
moelectric properties were greatly improved by adding only a small 
amount of Ag NPs to PEDOT-PSS film. However, when the Ag 
NPs concentration further increased to 1.0wt%, the electrical con-
ductivity rather decreased and thermoelectric power factor thereby 
decreased. We think that an increase in Ag NPs content hinder the 
packing of the PEDOT molecules necessary for keeping the electri-
cal conduction of the polymer film. 

Furthermore, we investigated the temperature dependence of 
thermoelectric performance for PEDOT-PSS film containing 
0.01wt% of Au NPs with PEDOT-PSS and PEDOT-PSS film 
containing 0.01wt% of  Pd NPs with PEDOT-PSS. Figure 5 shows  
(a) Seebeck coefficient, (b) electrical conductivity and (c) thermo-
electric power factor for the prepared films. The Seebeck coefficient 
decreased only slightly with metal NPs. The electrical conductivity 
of PEDOT-PSS film dramatically increased with Ag NPs or Au 
NPs. The electrical conductivities of PEDOT-PSS films containing 
0.01wt%, 0.1 wt%, and 1.0 wt% of Au NPs at 345 K were 919 S/cm, 
874 S/cm, and 853 S/cm, respectively. In the addition of Au NPs, the 
same tendency was observed in the case of PEDOT-PSS film con-
taining Ag NPs, as shown in Figure 4 (b). Meanwhile, when Pd NPs 

were added, the increase in electrical conductivity was small. Name-
ly, the electrical conductivity of PEDOT-PSS film increased with 
metal NPs in the order of Ag > Au > Pd. This order corresponds well 
with the order of the electrical conductivity of these metals, i.e., Ag 
> Au > Pd.  This result showed that the properties of the metal in the 
PEDOT-PSS-protected metal NPs contributed to the increase in 
electric conductivity of the PEDOT-PSS film. Temperature depen-
dent conductivity measurements were the most direct way to study 
experimentally the thermoelectric properties and conduction mech-
anism in a conjugated polymeric materials. The charge transport in 
the ethyleneglycol-treated PEDOT-PSS film is identified as a 
one-dimensional variable range hopping (1D VRH) model.44)

σ(T )=σ0 exp[-(T0/ T )1/2] … (1)
In equation (1), σ0 is the conductivity at infinite temperature, T0 is 

the energy barrier between localized states. The temperature depen-
dent electrical conductivity in the range of 330 K< T < 380 K were 
fitted by 1D VRH model, the Figure 6 shows the plots of ln(σ) vs. 
T-1/2 for pure PEDOT-PSS film and PEDOT-PSS film containing 
0.01wt% of Ag NPs film. According to the analyses of the data, the 
T0 value of pure PEDOT-PSS film and PEDOT-PSS film contain-
ing 0.01wt% of Ag NPs film are 63 K and 28 K, respectively. Be-
cause these results implies that the carrier hopping barrier decreases, 
i.e. the electrical conductivity increases, 45) in the Ag NPs system,  
PEDOT-PSS-protected Ag NPs entered between the PEDOT 
molecules promoted one-dimensional carrier conduction within 
PEDOT-PSS film. 

Figure 6    �Dependence of natural logarithm of conductivity versus T for 
PEDOT-PSS (black) and PEDOT-PSS with 0.01wt% Ag NPs 
(red).

Figure 5    �Thermoelectric parameters as a function of temperature for PE-
DOT-PSS film including 0.01wt% Ag NPs (red), PEDOT-PSS 
film containing 0.01wt% Au NPs (blue) and PEDOT-PSS film 
including 0.01wt% Pd NPs (green): (a) Seebeck coefficient, (b) 
electrical conductivity and (c) thermoelectric power factor, respec-
tively.

Figure 4    �Temperature dependence of (a) Seebeck coefficient, (b) electrical 
conductivity and (c) thermoelectric power factor for PE-
DOT-PSS (black) and PEDOT-PSS films with 0.01wt% (red), 
0.1wt% (blue), 1.0wt% (green) Ag NPs, respectively.
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Additionally, the thermoelectric performances in this works were 
compared with that of PANi system. The electrical conductivities at 
325 K for PEDOT-PSS or PANi-metal NPs system in this and 
previous studies are summarized in Figure 7. As in the case of PE-
DOT-PSS system, addition of conductive polymer-protected metal 
NPs (i.e., PANi-protected Au NPs) promoted current-flow in the 
conductive polymer film also in the PANi system. This indicates that 
the utilization of the hybridization of conductive polymer films and 
conductive polymer-protected metal NPs  probably achieve higher 
electrical conductivity. From these results, the conductive poly-
mer-protected metal NPs could be expected to function as charge 
transport promoter between the conductive polymer chains within 
organic thermoelectric conversion film. In this study, we designed a 
suitable metal-conductive polymer interface within thermoelectric 
conversion film and realized smooth carrier transport by using a 
small amount of PEDOT-PSS-protected Ag NPs. 

4. Summary

In conclusion, we have succeeded in the fabricating an organic–
inorganic hybrid thermoelectric materials consisting of PEDOT- 
PSS molecules and PEDOT-PSS protected noble metal NPs, i.e. 
Ag, Au and Pd, prepared by simple and convenient method. The 
electrical conductivity of PEDOT-PSS film significantly increased 
by adding PEDOT-PSS-protected Ag NPs, while thermoelectric 
power factor was enhanced. Surprisingly, we have demonstrated the 
optimized fabrication and interfacial carrier transport of metal 
nanomaterial-PEDOT-PSS hybrid films with high performance. 
That is, fabrication of conductive polymer–metal NPs hybrid mate-
rial is a promising method for improving the thermoelectric perfor-
mance of conductive polymers. These results present an important 
example for the control and understanding of carrier transport with-
in organic thermoelectric conversion materials, and provides a guid-
ing principle of the improved thermoelectric devices for the realiza-
tion of sustainable society. 
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