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1. Introduction

'ere has been a need for 3D shape measurements of objects and 

a 3D reconstruction on a computer, which applies measurement in-

formation such as a visual inspection of industrial products and the 

digital archiving of cultural properties. Photometric stereo1, 2) is one 

of the most popular methods for a 3D reconstruction. 'is method 

applies multiple images in which the direction of the illuminating 

light source is changed, and utilizes the relational expression esti-

mating the luminance by the inner product of the light source vector 

and the angle of the normal of the object for reconstructing the 

shape. It therefore implements a highly accurate shape reconstruc-

tion because the normal is calculated for each pixel of the image. By 

contrast, other approaches have certain limitations, such as the re-

quirement of a darkroom environment with no more light sources 

than necessary, and the need for a Lambert diffuse reflection mate-

rial that reflects the incident light equally in all reflection directions. 

'erefore, a method for transforming the specular reflection compo-

nents of an object into a diffuse form using a generative adversarial 

network (GAN), which is a leaning network developed by Wu et al. 

However, this method does not change the object surface despite the 

change in the position of the light source. 'us, it is inapplicable to 

a shape reconstruction using photometric stereo, which uses a 

change in the position of the light source.

In this study, we propose a new learning network that transforms 

captured specular images into a diffuse form while reflecting chang-

es in the surface luminance by using images that differ in terms of 

the position of the light source and position data of the light source. 

'is learning network utilizes the position data of the light source 

described as category information of a one-hot vector in addition to 

images that differ in the position of the light source. 'us, it enables 

a shape reconstruction of the specular surface from environments in 

which more than a single light source is illuminated, such as in pho-

tometric stereo. 'is network allows us to convert the specular part 

of the captured image into a diffuse form, which is necessary for 

photometric stereo, and enables a shape reconstruction by applying 

the photometric stereo for objects with specular surfaces using these 

images transformed through our learning network. In addition, it 

can avoid the limitations of not only surface reflections but also the 

capturing condition because the diffuse and specular images used in 

this network are respectively darkroom and non-darkroom images.

2. Related work

'is section describes the related research on GANs, which is the 

basis of the proposed learning network. 'e basic structure is based 

on the Cycle-GAN proposed by Zhu et al.3), which is a network that 

trains a generator and a discriminator by using two sets of images 

with features before and after the transformation, transforming one 

image into the other, and then reconverting the transformed image 
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to be closer to the image prior to the transformation. 'is network 

features a mechanism that returns the image transformed by the 

generator back into the image prior to transformation. It is possible 

to train the learning network such that this loss decreases by calcu-

lating the cycle consistency loss, which is represented by the differ-

ence between the dataset image before the transformation and the 

dataset image that has been re-transformed to be closer to the image 

prior to the transformation using the generator.

Our method was also inspired by the network developed by Wu et 

al., which uses this Cycle-GAN mechanism and transforms the im-

age from a specular form into a diffuse form for a 3D shape recon-

struction using images4). 'is method applies a learning network 

that specializes in converting the surface reflection of a specular re-

flecting object into a diffuse reflection and introduces cycle consis-

tency loss similar to that of a Cycle-GAN. However, because this 

method is intended to be applied along with an approach combining 

two types of shape reconstruction5, 6), i.e., Structure from Motion7) 

and Shape from Shading8), it is unsuitable for a shape restoration in 

photometric stereo simply because of a problem in which the image 

transformation cannot reflect the direction of the light source posi-

tion as shown in Fig. 1.

In this study, we use a StarGAN9) learning network to achieve an 

image transformation, which includes the information of the light 

source position to solve this problem. In this research, the feature of 

adding category information describing the information of the light 

source position at the time of training makes it easier to determine 

the change in the light source position from the image alone. In 

StarGAN, the category information is used to update the weights 

using the classification information of the image transformation. In 

addition, to transform images by manipulating the category infor-

mation, StarGAN has the structure of a single generator. 'e cate-

gorical information in StarGAN prevents learning from proceeding 

by focusing on features that are not the target of the transformation, 

which results in a higher accuracy than learning from images alone. 

In addition, the discriminator in StarGAN not only identifies 

whether an image has been transformed, by applying the ACGAN10) 

method as an auxiliary approach allowing it to discriminate fine de-

tails, it also identifies the category of the image classification. Using 

this method to classify images, it is able to discriminate small chang-

es in comparison to a general GAN. In this study, we incorporate the 

network structure of StarGAN into the method developed by Wu et 

al. and propose a new image transformation network that can trans-

form captured images into images suitable for photometric stereo.

3. Training dataset creation

In this study, we prepared a custom dataset to implement an im-

age transformation that can be used for a shape reconstruction in 

photometric stereo. 'is dataset consists of two types of assets: im-

ages of objects with specular and diffuse surface reflections, and cat-

egory information that describes the surface reflection and light 

source position within the images. In this section, we describe how 

these datasets were constructed.

3.1 Image dataset creation

We created the dataset images by rendering a 3D CG model in a 

computer. In this study, 10 different simple primitive shapes were 

applied, which can be divided into two main types of surface fea-

tures, planar and curved, at a 1:1 ratio. 'e shape models include 

typical primitive shapes such as polyhedra, cones, or similar shapes 

such as spheres, pyramids, cones, cylinders, regular polyhedra, and 

torus. Some of the rendering images used are shown in Fig. 2.

As shown in Fig. 3, the captured object was set on the floor. In 

addition, the camera was placed at a fixed position in a direction 

vertical to the object.

'e material of the object surface was set through the rendering 

on the computer, as shown in Fig. 3. In this study, we use phisically 

based rendering11), which can quantitatively set the position, angle, 

and gloss of an object. We applied silver as the material for the spec-

ular reflection, and a matte material with a white color for the Lam-

bert diffuse reflection. We set the parallel light to change the surface 

luminance, which is necessary for photometric stereo, and set the 

environmental light from outside for the diffuse material.

We applied the parallel light by setting up a directional light at 

infinity. We set up the light sources at six locations where the angle 

between the light sources and the floor surface is 60°, using the cen-

ter of the object as the base axis, as shown in Fig. 4. We capture the 

images by turning on one light per shot. A 3D reconstruction can be 

achieved using images with light sources located in at least three 

positions using photometric stereo. However, we have frequently ob-

served a collapsed estimation of the normal where there is no light 

exposure, and thus we used six light positions to ensure that the 

entire object is illuminated.

'e environmental light is simulated on a computer using five 

different HDR environment maps. 'ese environment maps are 

limited to 32-bit HDR images captured indoors. 'is is because, in 

this study, we suppose the use of photometric stereo in an indoor 

Fig. 1  Results of image transformation with learning network of Wu et al.4) (a) Original image. 
(b) Transformed image. (c) Ground truth.
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environment. In this case, environment maps are rotated at a ran-

dom angle based on the axis vertical from the floor to accommodate 

images captured in a variety of situations. 'e rendered image is a 

24-bit color image. Although an image containing specular reflec-

tion should normally be a 32-bit image, because the purpose of this 

study is to convert a specular reflection image captured using an or-

dinary camera, we decided to apply a 24- bit color image.

3.2 Category information creation

In this study, we describe information regarding the surface re-

flection and light source positions as the category information. 'e 

learning network applied in this study uses such information to 

transform and classify the images. 'e category information is de-

scribed through a one-hot vector using "1"s and "0"s. A vector with 

a 1 indicates a corresponding category, whereas a vector with a "0" 

represents a noncorresponding category. In addition, we classified 

images into two types of categories: surface reflection and light 

source position. As an example, the category information under a 

certain situation is as shown in Fig. 5. 'e value on the left side de-

scribes the surface reflection, and the other values indicate the light 

source position. In addition, the generator can switch the target cat-

egory to a different category by switching the "0" or "1" one-hot 

vectors using such information. In this study, we use this structure to 

transform images with a generator.

4. Building of a learning network

'e learning model used for this approach applies a GAN con-

sisting of two networks: a generator for image transformation and a 

discriminator for image discrimination. 'e architecture of our ap-

proach is shown in Fig. 6.

4.1 Generator and discriminator

'e generator serves to transform image  in the dataset into im-

age , corresponding to the transformation target. 'e training net-

work is based on the StarGAN structure and uses two types of in-

formation input into the generator, i.e., the images contained in the 

dataset and the category information as the target of the transfor-

mation. 'e architecture of the generator is shown in Fig. 7.

Fig. 2  Example of rendering images with specular surface used. (a) Sphere. (b) Cylinder. (c) Cone. (d) Regular dodecahedron. (e) Torus. 

Fig. 3 Rendering environment.

Fig. 4  Position of light source at rendering. (a) View from the shooting direction. (b) View from the direction horizontal to the floor.

Fig. 5  Example of describing surface reflections and light positions as cate-
gory information.
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'e target category information for the transformation is created 

by switching the one-hot vectors of the category information asso-

ciated with the images in the dataset, as shown in Fig. 7. By input-

ting the image into the generator, the image can be converted into 

the target image. To achieve the purpose of this study in terms of the 

image transformation, we set some constraints related to the condi-

tion when choosing the images and category information, including 

always switching the one-hot vector of the surface reflection before 

and after the input of the generator, and fixing the light source posi-

tion without such switching. In addition, as with a Cycle-GAN, this 

method introduces a consistency loss mechanism in which the im-

age transformed by the generator is transformed again into the orig-

inal image prior to the transformation, and the differences between 

them are calculated. 'erefore, even when the surface reflection is 

diffuse, the transformation from a diffuse to specular surface is set up 

in the same way as when an image with a specular surface is input. 

'is makes it possible to transform the image by changing the sur-

face reflection while maintaining the information of the light source 

position.

'e discriminator inputs the image ( , ) transformed by the 

generator and image  contained in the dataset, and then differenti-

ates the input images. In this study, we discriminate the images in 

two ways: using the image itself, and by classifying the image based 

on category information. 'e architecture of the discriminator is 

shown in Fig. 8. 'e discriminator alternately inputs the image 

( , ) transformed by the generator and dataset image .

First, it identifies whether the image input into the discriminator 

is an image transformed by the generator or a dataset image, as with 

a conventional GAN. However, using this method alone makes it 

Fig. 6 Architecture and loss function of the proposed method.

Fig. 7 Architecture of the generator using category information.

Fig. 8  Architecture of the discriminator with discrimination and classifica-
tion functions.



Hiroto SUTO, Ikumi HIROSE, Norimichi TSUMURA       Shape reconstruction based on diffusion of captured images through deep learning using position data of the light sources 5

difficult to discriminate fine details such as changes in luminance. 

'us, as an auxiliary approach, we use the method applying an AC-

GAN10) to categorize the images. Such an approach is applied to 

classify the image input into the discriminator corresponding to the 

light source position. 'is makes it possible to discriminate small 

changes such as the position of the light source in comparison to a 

general GAN.

4.2 Loss function

We calculate the loss function to find the optimal weights for 

achieving a higher accuracy of the generator and the discriminator. 

'e learning applied in this study is based on four loss functions, i.e., 

adversarial loss, category classification loss, and reconstruction loss 

based on a conventional StarGAN method, and uniformity preser-

vation loss, which was newly developed for this study. When the 

adversarial loss is adv ; the category classification loss is cls  and cls 

for the generator and discriminator, respectively; the reconstruction 

loss is rec; and the uniformity preservation loss is ret. In addition, 

the hyperparameters of each loss function are adv, cls, rec, and ret, 

respectively. 'e final loss functions of the generator and discrimina-

tor,  and , respectively, are as shown in the following equations.

  (1)

  (2)

Adversarial and category classification losses are functions that 

use the results of an image discrimination and classification by a 

discriminator. Adversarial loss is the loss of computing the probabil-

ity distribution of whether image  input into the discriminator is 

contained in the original dataset or is transformed by the generator. 

'e category classification loss is a function that calculates the prob-

ability distribution of whether image  input into the discriminator 

will be classified as category information  or . 'us, if expected 

value is , the adversarial and category classification losses can be 

expressed through the following equations. For example, if adv( ) is 

able to output data close to reality, [log adv( )] becomes larger. In 

addition, if ( , ) generates an output close to reality, 

 becomes larger. 'us, adv will be close 

to zero.

  (3)

  (4)

  (5)

As shown in Eqs. (4) and (5), the loss function of the generator 

calculates the probability for the transformed image, and the dis-

criminator calculates the probability for the original image to learn 

separately in the generator and discriminator.

'e reconstruction loss is a function for the generator. It com-

putes the difference between images transformed by the generator 

and those transformed again using the generator such that the orig-

inal image  prior to input is restored. 'is takes on the role of cre-

ating correspondence between the images before and after the trans-

formation. When the target category information of the 

transformation is , and the original category information contained 

in the dataset is , the reconstruction loss rec is expressed through 

the following equation.

  (6)

We calculate the difference between the image transformed by the 

generator and the image prior to the transformation with the L1 

norm. We train the generator such that the difference in the above 

equation decreases, and then build a learning network that enables 

an image transformation that maintains the consistency of the im-

age.

'ere are problems with the loss function described above. First, 

images are transformed with high or low luminance regardless of 

changes in the position of the light source. Second, the transforma-

tion fails considerably in areas with low luminance, such as areas 

corresponding to shadows. 'erefore, in this study, we introduce a 

uniformity preservation loss as a new loss function for applying a 

diffuse image illuminated toward an object from the same direction 

as the captured position, and then correcting the image from each 

light source position to be closer to this image. An image with a 

uniformity preservation loss is shown in Fig. 9.

'is is a function that corrects for changes in the luminance of the 

surface to be transformed, with the goal of improving the accuracy 

of the transformation. 'e formula is computed using the difference 

between images based on the L1 norm, as with Eq. (6) for the recon-

struction loss. When the image in the dataset is , the categorical 

information targeted for transformation is , and the image illumi-

nated from the same direction as the captured direction is x , the 

Fig. 9 Mechanism of uniformity preservation loss.
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uniformity preservation loss ret is expressed through the following 

equation.

  (7)

'is makes it possible to transform an image reflecting the lumi-

nance transformation of the surface owing to changes in the light 

source position while correcting the luminance of the transformed 

image.

4.3 Network structure

'e network structure of the learning network is based on that 

used in StarGAN. 'e network structure of the generator and dis-

criminator are shown in Fig. 10. 'e structure of the generator is 

roughly divided into three layers: a downsampling layer, a bottleneck 

layer, and an upsampling layer. 'e downsampling layer convolutes 

images and extracts image features, the bottleneck layer transforms 

features based on the weights, and the upsampling layer deconvo-

lutes the features and restores the images from the feature map.

'e ReLU function is used as the activation function for each 

layer. In addition, in the bottleneck layer, the structure of the residu-

al network (ResNet)12) is adopted to efficiently learn more detailed 

features. In addition, as with a general neural network, the structure 

of the discriminator consists of three layers: an input layer, a hidden 

layer, and an output layer. 'e input layer obtains a feature map from 

the image, the five hidden layers convolute to extract the features, 

and the output layer classifies and identifies such features.

4.4 Learning parameters

Two types of images, specular and diffuse, are used along with 200 

patterns. In the case of specular images, we prepared six light sourc-

es positions, whereas in the case of diffuse images, to calculate the 

difference between the image illuminated from the same capturing 

direction from the same direction, seven images, including one addi-

tional image, were used for the calculation of the uniformity preser-

vation loss. 'e resolution of each image was set to 256 × 256 owing 

to the learning time. In addition, although 32-bit images should be 

used for images containing specular reflections, 8-bit images are 

used for training in this study because the purpose is to convert im-

ages taken under general conditions. We set the learning rate to 

0.0001 for both the generator and discriminator; the hyperparame-

ters of each loss function to 1 for the adversarial and uniformity 

preservation losses, and to 10 for the category classification and re-

construction losses; and the number of iterations to 100,000, which 

is the number of times the best accuracy was achieved when we re-

peated the training of the model and checked the accuracy of the 

image transformation and shape reconstruction.

5. Verification of learning results using the proposed 
method

We transformed the images using the learning network developed 

in this study, reconstructed the shape, and compared the results with 

the ground truth. In addition, we verified the effectiveness of the 

newly introduced uniformity preservation loss. 'is time, among the 

polyhedra and cones included in the dataset for primitive shapes, we 

used pentagonal pyramids, faceted icosahedra, and faceted cones 

that were not applied for training, as shown in Fig. 11.

'e evaluation of the transformed images is carried out in two 

ways: a qualitative evaluation based on the transformation results of 

the images, and a quantitative evaluation based on the root mean 

square error (RMSE) of the ground truth images. 'e ground truth 

image is an image of the target shape of the object created in a ren-

Fig. 10 Network structure. (a) Generator. (b) Discriminator
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dering environment in which the surface reflection is Lambert dif-

fuse reflection, as in the training dataset, and with no environment 

map used in PBRT. Because the normal is estimated using only the 

part of the object that is not included in the target object in illumi-

nance stereo, the RMSE is calculated by masking the part of the 

object that is not the target object in the quantitative evaluation as 

well.

As with the evaluation of the image transformation, the evalua-

tion of the restored shape is carried out in two ways: a qualitative 

evaluation using the estimated normal map showing the direction of 

the normal  as an RGB value, as well as a 3D model of the re-

stored shape, and a quantitative evaluation using the RMSE be-

tween the point cloud and the restored shape from the ground-truth 

image. 'e RMSE between point clouds is synonymous with the 

calculation of the Euclidean distance between point clouds. To de-

rive this Euclidean distance, we use the iterative closest point (ICP) 

algorithm13), which is a method for aligning point clouds. 'is meth-

od is used to align the point cloud of the target shape by repeatedly 

detecting the nearest neighbor points between the point cloud of the 

ground truth shape and the point cloud estimated from the trans-

formed image, and by estimating the rigid body transformation se-

quence such that the error in the distance between the nearest 

neighbor points is minimized. 'e process is repeated until the error 

in the distance between the point clouds is less than the threshold 

for convergence, and the average error in the distance between the 

point clouds at the time of convergence is derived for each corre-

sponding point cloud. In practice, if the points to be mapped are , 

the number of point groups is , the points to be mapped are , and 

the rotation and translation of the rigid body transformation se-

quence are  and , respectively, the Euclidean distance between the 

point groups is 211, which is calculated as follows:

  (8)

5.1 Qualitative evaluation

In Fig. 12, (1) is a captured image to be input into the learning 

model, (2) is an image used as the ground truth, (3) is an image 

transformed using S2Dnet as a conventional approach, (4) is an im-

age transformed using the learning model without uniformity pres-

ervation loss, and (5) is the images transformed using our approach. 

Nos. 1-6 indicate the horizontal direction.

'e result of a shape reconstruction when applying photometric 

stereo using the transformed images is shown in Fig. 13. 'is result 

of the shape reconstruction is a view from the horizontal direction.

Fig. 11  Shapes for verification. (a) Pentagonal pyramid. (b) Faceted icosahe-
dra. (c) Faceted cone.

Fig. 12  Images transformed from each light position. (a) Pentagonal pyra-
mid. (b) Faceted icosahedra. (c) Faceted cone. ((1) Input images. (2) 
Ground truth. (3) Wu et al.'s approach.4) (4) Our method (with no 
uniformity preservation loss). (5) Our method.)
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Based on the results, we confirmed that our method can trans-

form images reflecting changes in the luminance of the surface ow-

ing to changes in the light source position better than the conven-

tional method. Although we could not confirm significant changes 

in the image transformation with or without a loss of uniformity 

preservation, we confirmed that the reconstructed shape was closer 

to ground truth in terms of the height from the floor.

5.2 Quantitative evaluation

A graphical representation of the RMSE of the transformed im-

ages using the S2Dnet when applying the conventional method, the 

method with no uniformity preservation loss, and our proposed 

method, along with the ground truth image of each shape, are shown 

in Fig. 14. Each graph is the result of averaging six images formed 

into each shape, and the average for each method is shown on the 

right. 'e standard errors based on the shape applied are also shown 

in the same graph along with error bars.

In addition, Fig. 15 shows a graphical representation of the 

RMSE results when applying the conventional method, the method 

without uniformity preservation loss, and our proposed approach, 

along with the ground truth images, using photometric stereo. 'ese 

results indicate the individual errors for the three validation geome-

tries, and the mean and standard error based on the geometry are 

also shown on the right side.

'e results show that the proposed method has a smaller RMSE 

error than the conventional method for both the transformed image 

and the reconstructed shape, and the accuracy of the proposed 

method has been improved. In addition, there were no significant 

changes in the transformed image with or without a loss of unifor-

mity preservation, where the error in the reconstructed shape was 

slightly smaller with the method that introduced our proposed loss.

6. Discussion

From the verification results described in section 5, it can be stat-

ed that our method can convert an image to reflect the changes in 

luminance caused by the change in the direction of the light source 

and can restore the shape close to the ground truth in comparison to 

the conventional method. In particular, as one of the major differ-

ences between our method and the conventional approach, the 

thickness of the shape from the floor surface can be restored using 

our method. As the reason for this, the image used in this study, 

which is applied as an index for calculating the loss of uniformity, is 

illuminated from the same direction as the shooting direction. Al-

though the distance between the floor surface and the light source 

was not changed in the images applied for this training, the training 

was conducted such that the images were closer to those irradiated 

from the same direction as the shooting direction. Because of this, 

the luminance was converted to be higher at positions closer to the 

shooting direction and lower at positions farther away. As a result, it 

is therefore highly possible that the luminance representation re-

flected the shape of the vertical direction from the floor surface. 

From this perspective, it can be stated that the introduction of the 

uniformity retention loss is effective.

Fig. 13 Ground truth shape and reconstructed shape with Wu et al.'s ap-
proach4) and our method without and with uniformity preservation 
loss. ('e upper level is a normal view. 'e lower level is a horizontal 
view.) (a) Pentagonal pyramid. (b) Faceted icosahedra. (c) Faceted 
cone.

Fig. 14 RMSE between ground truth and transformed images with Wu et 
al.'s approach8) and our method without and with uniformity preser-
vation loss.

Fig. 15 RMSE between ground truth and reconstructed shapes with Wu et 
al.'s approach8) and our method without and with uniformity preser-
vation loss.
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By contrast, it was confirmed that the surface was distorted in 

comparison to the results of the ground truth, and that the incorrect 

conversion has not yet been sufficiently improved. 'is problem is 

thought to be largely due to the fact that the calculation of the uni-

formity preservation loss is from a difference in subtraction. 'ere-

fore, it will be necessary to improve this problem by reducing the 

number of convolutional layers, introducing the structure of a 

Self-Attention GAN14) that can generate images based on global 

features and allowing such features to be learned, improving the hy-

perparameter of the uniformity preservation loss, and increasing the 

variation of the height of the light source from the floor.

7. Conclusions and future work

In this study, we proposed a new learning network that can reflect 

the changes in luminance of a surface owing to changes in the light 

source position by adding the position data of the light source as 

category information. 'e results of photometric stereo using the 

images transformed by our learning network showed that it is possi-

ble to reconstruct a shape more accurately than through a conven-

tional image transformation method.

In the future, we will solve the problem of distortions appearing 

on the surface of the shape and improve the method to address the 

incorrectly transformed parts of the image. In addition, it is expected 

that the approach will handle 3D reconstructions with images under 

a wide range of conditions by increasing the number of light sources, 

materials, and shapes included in the dataset images. Moreover, this 

research was aimed at converting specular images captured by pop-

ular cameras. Because of this, we used 24-bit images in the training 

set. However, specular images require a very wide dynamic range, 

and 24-bit images may not be able to accurately represent specular 

reflection. 'erefore, in order to construct a conversion network that 

can handle specular reflection images more accurately, it will be nec-

essary to conduct learning using HDR format images of approxi-

mately 32 bits in the future.
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